3.6.16 \(\int \frac {\sqrt {a+b x^2} (A+B x^2)}{x^7} \, dx\) [516]

Optimal. Leaf size=120 \[ \frac {(A b-2 a B) \sqrt {a+b x^2}}{8 a x^4}+\frac {b (A b-2 a B) \sqrt {a+b x^2}}{16 a^2 x^2}-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6}-\frac {b^2 (A b-2 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{16 a^{5/2}} \]

[Out]

-1/6*A*(b*x^2+a)^(3/2)/a/x^6-1/16*b^2*(A*b-2*B*a)*arctanh((b*x^2+a)^(1/2)/a^(1/2))/a^(5/2)+1/8*(A*b-2*B*a)*(b*
x^2+a)^(1/2)/a/x^4+1/16*b*(A*b-2*B*a)*(b*x^2+a)^(1/2)/a^2/x^2

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {457, 79, 43, 44, 65, 214} \begin {gather*} -\frac {b^2 (A b-2 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{16 a^{5/2}}+\frac {b \sqrt {a+b x^2} (A b-2 a B)}{16 a^2 x^2}+\frac {\sqrt {a+b x^2} (A b-2 a B)}{8 a x^4}-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*x^2]*(A + B*x^2))/x^7,x]

[Out]

((A*b - 2*a*B)*Sqrt[a + b*x^2])/(8*a*x^4) + (b*(A*b - 2*a*B)*Sqrt[a + b*x^2])/(16*a^2*x^2) - (A*(a + b*x^2)^(3
/2))/(6*a*x^6) - (b^2*(A*b - 2*a*B)*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/(16*a^(5/2))

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^2} \left (A+B x^2\right )}{x^7} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {\sqrt {a+b x} (A+B x)}{x^4} \, dx,x,x^2\right )\\ &=-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6}+\frac {\left (-\frac {3 A b}{2}+3 a B\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x}}{x^3} \, dx,x,x^2\right )}{6 a}\\ &=\frac {(A b-2 a B) \sqrt {a+b x^2}}{8 a x^4}-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6}-\frac {(b (A b-2 a B)) \text {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b x}} \, dx,x,x^2\right )}{16 a}\\ &=\frac {(A b-2 a B) \sqrt {a+b x^2}}{8 a x^4}+\frac {b (A b-2 a B) \sqrt {a+b x^2}}{16 a^2 x^2}-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6}+\frac {\left (b^2 (A b-2 a B)\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^2\right )}{32 a^2}\\ &=\frac {(A b-2 a B) \sqrt {a+b x^2}}{8 a x^4}+\frac {b (A b-2 a B) \sqrt {a+b x^2}}{16 a^2 x^2}-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6}+\frac {(b (A b-2 a B)) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^2}\right )}{16 a^2}\\ &=\frac {(A b-2 a B) \sqrt {a+b x^2}}{8 a x^4}+\frac {b (A b-2 a B) \sqrt {a+b x^2}}{16 a^2 x^2}-\frac {A \left (a+b x^2\right )^{3/2}}{6 a x^6}-\frac {b^2 (A b-2 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{16 a^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 102, normalized size = 0.85 \begin {gather*} \frac {\sqrt {a+b x^2} \left (-8 a^2 A-2 a A b x^2-12 a^2 B x^2+3 A b^2 x^4-6 a b B x^4\right )}{48 a^2 x^6}+\frac {b^2 (-A b+2 a B) \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{16 a^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*x^2]*(A + B*x^2))/x^7,x]

[Out]

(Sqrt[a + b*x^2]*(-8*a^2*A - 2*a*A*b*x^2 - 12*a^2*B*x^2 + 3*A*b^2*x^4 - 6*a*b*B*x^4))/(48*a^2*x^6) + (b^2*(-(A
*b) + 2*a*B)*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/(16*a^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(201\) vs. \(2(100)=200\).
time = 0.09, size = 202, normalized size = 1.68

method result size
risch \(-\frac {\sqrt {b \,x^{2}+a}\, \left (-3 A \,b^{2} x^{4}+6 B a b \,x^{4}+2 a A b \,x^{2}+12 B \,a^{2} x^{2}+8 a^{2} A \right )}{48 x^{6} a^{2}}-\frac {b^{3} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{2}+a}}{x}\right ) A}{16 a^{\frac {5}{2}}}+\frac {b^{2} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{2}+a}}{x}\right ) B}{8 a^{\frac {3}{2}}}\) \(124\)
default \(B \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{4 a \,x^{4}}-\frac {b \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{2 a \,x^{2}}+\frac {b \left (\sqrt {b \,x^{2}+a}-\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{2}+a}}{x}\right )\right )}{2 a}\right )}{4 a}\right )+A \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{6 a \,x^{6}}-\frac {b \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{4 a \,x^{4}}-\frac {b \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{2 a \,x^{2}}+\frac {b \left (\sqrt {b \,x^{2}+a}-\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{2}+a}}{x}\right )\right )}{2 a}\right )}{4 a}\right )}{2 a}\right )\) \(202\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)*(b*x^2+a)^(1/2)/x^7,x,method=_RETURNVERBOSE)

[Out]

B*(-1/4/a/x^4*(b*x^2+a)^(3/2)-1/4*b/a*(-1/2/a/x^2*(b*x^2+a)^(3/2)+1/2*b/a*((b*x^2+a)^(1/2)-a^(1/2)*ln((2*a+2*a
^(1/2)*(b*x^2+a)^(1/2))/x))))+A*(-1/6/a/x^6*(b*x^2+a)^(3/2)-1/2*b/a*(-1/4/a/x^4*(b*x^2+a)^(3/2)-1/4*b/a*(-1/2/
a/x^2*(b*x^2+a)^(3/2)+1/2*b/a*((b*x^2+a)^(1/2)-a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^2+a)^(1/2))/x)))))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 174, normalized size = 1.45 \begin {gather*} \frac {B b^{2} \operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | x \right |}}\right )}{8 \, a^{\frac {3}{2}}} - \frac {A b^{3} \operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | x \right |}}\right )}{16 \, a^{\frac {5}{2}}} - \frac {\sqrt {b x^{2} + a} B b^{2}}{8 \, a^{2}} + \frac {\sqrt {b x^{2} + a} A b^{3}}{16 \, a^{3}} + \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}} B b}{8 \, a^{2} x^{2}} - \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}} A b^{2}}{16 \, a^{3} x^{2}} - \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}} B}{4 \, a x^{4}} + \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}} A b}{8 \, a^{2} x^{4}} - \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}} A}{6 \, a x^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(b*x^2+a)^(1/2)/x^7,x, algorithm="maxima")

[Out]

1/8*B*b^2*arcsinh(a/(sqrt(a*b)*abs(x)))/a^(3/2) - 1/16*A*b^3*arcsinh(a/(sqrt(a*b)*abs(x)))/a^(5/2) - 1/8*sqrt(
b*x^2 + a)*B*b^2/a^2 + 1/16*sqrt(b*x^2 + a)*A*b^3/a^3 + 1/8*(b*x^2 + a)^(3/2)*B*b/(a^2*x^2) - 1/16*(b*x^2 + a)
^(3/2)*A*b^2/(a^3*x^2) - 1/4*(b*x^2 + a)^(3/2)*B/(a*x^4) + 1/8*(b*x^2 + a)^(3/2)*A*b/(a^2*x^4) - 1/6*(b*x^2 +
a)^(3/2)*A/(a*x^6)

________________________________________________________________________________________

Fricas [A]
time = 1.50, size = 221, normalized size = 1.84 \begin {gather*} \left [-\frac {3 \, {\left (2 \, B a b^{2} - A b^{3}\right )} \sqrt {a} x^{6} \log \left (-\frac {b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) + 2 \, {\left (3 \, {\left (2 \, B a^{2} b - A a b^{2}\right )} x^{4} + 8 \, A a^{3} + 2 \, {\left (6 \, B a^{3} + A a^{2} b\right )} x^{2}\right )} \sqrt {b x^{2} + a}}{96 \, a^{3} x^{6}}, -\frac {3 \, {\left (2 \, B a b^{2} - A b^{3}\right )} \sqrt {-a} x^{6} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right ) + {\left (3 \, {\left (2 \, B a^{2} b - A a b^{2}\right )} x^{4} + 8 \, A a^{3} + 2 \, {\left (6 \, B a^{3} + A a^{2} b\right )} x^{2}\right )} \sqrt {b x^{2} + a}}{48 \, a^{3} x^{6}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(b*x^2+a)^(1/2)/x^7,x, algorithm="fricas")

[Out]

[-1/96*(3*(2*B*a*b^2 - A*b^3)*sqrt(a)*x^6*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(3*(2*B*a^2*
b - A*a*b^2)*x^4 + 8*A*a^3 + 2*(6*B*a^3 + A*a^2*b)*x^2)*sqrt(b*x^2 + a))/(a^3*x^6), -1/48*(3*(2*B*a*b^2 - A*b^
3)*sqrt(-a)*x^6*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + (3*(2*B*a^2*b - A*a*b^2)*x^4 + 8*A*a^3 + 2*(6*B*a^3 + A*a^2
*b)*x^2)*sqrt(b*x^2 + a))/(a^3*x^6)]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 226 vs. \(2 (107) = 214\).
time = 54.83, size = 226, normalized size = 1.88 \begin {gather*} - \frac {A a}{6 \sqrt {b} x^{7} \sqrt {\frac {a}{b x^{2}} + 1}} - \frac {5 A \sqrt {b}}{24 x^{5} \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {A b^{\frac {3}{2}}}{48 a x^{3} \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {A b^{\frac {5}{2}}}{16 a^{2} x \sqrt {\frac {a}{b x^{2}} + 1}} - \frac {A b^{3} \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x} \right )}}{16 a^{\frac {5}{2}}} - \frac {B a}{4 \sqrt {b} x^{5} \sqrt {\frac {a}{b x^{2}} + 1}} - \frac {3 B \sqrt {b}}{8 x^{3} \sqrt {\frac {a}{b x^{2}} + 1}} - \frac {B b^{\frac {3}{2}}}{8 a x \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {B b^{2} \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x} \right )}}{8 a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)*(b*x**2+a)**(1/2)/x**7,x)

[Out]

-A*a/(6*sqrt(b)*x**7*sqrt(a/(b*x**2) + 1)) - 5*A*sqrt(b)/(24*x**5*sqrt(a/(b*x**2) + 1)) + A*b**(3/2)/(48*a*x**
3*sqrt(a/(b*x**2) + 1)) + A*b**(5/2)/(16*a**2*x*sqrt(a/(b*x**2) + 1)) - A*b**3*asinh(sqrt(a)/(sqrt(b)*x))/(16*
a**(5/2)) - B*a/(4*sqrt(b)*x**5*sqrt(a/(b*x**2) + 1)) - 3*B*sqrt(b)/(8*x**3*sqrt(a/(b*x**2) + 1)) - B*b**(3/2)
/(8*a*x*sqrt(a/(b*x**2) + 1)) + B*b**2*asinh(sqrt(a)/(sqrt(b)*x))/(8*a**(3/2))

________________________________________________________________________________________

Giac [A]
time = 1.77, size = 140, normalized size = 1.17 \begin {gather*} -\frac {\frac {3 \, {\left (2 \, B a b^{3} - A b^{4}\right )} \arctan \left (\frac {\sqrt {b x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a^{2}} + \frac {6 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} B a b^{3} - 6 \, \sqrt {b x^{2} + a} B a^{3} b^{3} - 3 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} A b^{4} + 8 \, {\left (b x^{2} + a\right )}^{\frac {3}{2}} A a b^{4} + 3 \, \sqrt {b x^{2} + a} A a^{2} b^{4}}{a^{2} b^{3} x^{6}}}{48 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*(b*x^2+a)^(1/2)/x^7,x, algorithm="giac")

[Out]

-1/48*(3*(2*B*a*b^3 - A*b^4)*arctan(sqrt(b*x^2 + a)/sqrt(-a))/(sqrt(-a)*a^2) + (6*(b*x^2 + a)^(5/2)*B*a*b^3 -
6*sqrt(b*x^2 + a)*B*a^3*b^3 - 3*(b*x^2 + a)^(5/2)*A*b^4 + 8*(b*x^2 + a)^(3/2)*A*a*b^4 + 3*sqrt(b*x^2 + a)*A*a^
2*b^4)/(a^2*b^3*x^6))/b

________________________________________________________________________________________

Mupad [B]
time = 1.02, size = 134, normalized size = 1.12 \begin {gather*} \frac {B\,b^2\,\mathrm {atanh}\left (\frac {\sqrt {b\,x^2+a}}{\sqrt {a}}\right )}{8\,a^{3/2}}-\frac {B\,\sqrt {b\,x^2+a}}{8\,x^4}-\frac {A\,\sqrt {b\,x^2+a}}{16\,x^6}-\frac {A\,{\left (b\,x^2+a\right )}^{3/2}}{6\,a\,x^6}+\frac {A\,{\left (b\,x^2+a\right )}^{5/2}}{16\,a^2\,x^6}-\frac {B\,{\left (b\,x^2+a\right )}^{3/2}}{8\,a\,x^4}+\frac {A\,b^3\,\mathrm {atan}\left (\frac {\sqrt {b\,x^2+a}\,1{}\mathrm {i}}{\sqrt {a}}\right )\,1{}\mathrm {i}}{16\,a^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x^2)*(a + b*x^2)^(1/2))/x^7,x)

[Out]

(A*b^3*atan(((a + b*x^2)^(1/2)*1i)/a^(1/2))*1i)/(16*a^(5/2)) - (B*(a + b*x^2)^(1/2))/(8*x^4) - (A*(a + b*x^2)^
(1/2))/(16*x^6) + (B*b^2*atanh((a + b*x^2)^(1/2)/a^(1/2)))/(8*a^(3/2)) - (A*(a + b*x^2)^(3/2))/(6*a*x^6) + (A*
(a + b*x^2)^(5/2))/(16*a^2*x^6) - (B*(a + b*x^2)^(3/2))/(8*a*x^4)

________________________________________________________________________________________